The Time Course of Gene Expression during Reactive Gliosis in the Optic Nerve

نویسندگان

  • Juan Qu
  • Tatjana C. Jakobs
چکیده

Reactive gliosis is a complex process that involves changes in gene expression and morphological remodeling. The mouse optic nerve, where astrocytes, microglia and oligodendrocytes interact with retinal ganglion cell axons and each other, is a particularly suitable model for studying the molecular mechanisms of reactive gliosis. We triggered gliosis at the mouse optic nerve head by retro orbital nerve crush. We followed the expression profiles of 14,000 genes from 1 day to 3 months, as the optic nerve formed a glial scar. The transcriptome showed profound changes. These were greatest shortly after injury; the numbers of differentially regulated genes then dropped, returning nearly to resting levels by 3 months. Different genes were modulated with very different time courses, and functionally distinct groups of genes responded in partially overlapping waves. These correspond roughly to two quick waves of inflammation and cell proliferation, a slow wave of tissue remodeling and debris removal, and a final stationary phase that primarily reflects permanent structural changes in the axons. Responses from astrocytes, microglia and oligodendrocytes were distinctively different, both molecularly and morphologically. Comparisons to other models of brain injury and to glaucoma indicated that the glial responses depended on both the tissue and the injury. Attempts to modulate glial function after axonal injuries should consider different mechanistic targets at different times following the insult.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expressional Analysis of Stem Cell Marker SALL4 in Mesencephalon during Chicken Embryogenesis

Background SALL gene family represent a group of evolutionary conserved zinc finger transcription factors which are involved in normal development. It includes four members (SALL1 to SALL4). SALL4 has significant roles in the maintenance of pluripotency and self-renewal, efficient proliferation /stabilization and cell fate decision of embryonic stem cells (ESCs). Our aim in this study was to a...

متن کامل

Optic Nerve Regeneration After Crush Remodels the Injury Site: Molecular Insights From Imaging Mass Spectrometry

Purpose Mammalian central nervous system axons fail to regenerate after injury. Contributing factors include limited intrinsic growth capacity and an inhibitory glial environment. Inflammation-induced optic nerve regeneration (IIR) is thought to boost retinal ganglion cell (RGC) intrinsic growth capacity through progrowth gene expression, but effects on the inhibitory glial environment of the o...

متن کامل

Evaluation of the presence and time-variable expression levels of rpoS, relA and mazf genes during biofilm formation in Staphylococcus epidermidis

Background and purpose:Staphylococcus epidermidis is an opportunistic pathogen that is involved in the development of infections associated with the use of implants and medical devices. Biofilm formation is one of the most important virulence factors of this microorganism, which vastly depends on various factors, including different proteins. In the present study, the expression levels of three...

متن کامل

Effect of Spinal Nerve Ligation after Endurance Training on the Gene Expression of MST1 and MAFbx in Plantaris Muscle of Male Wistar Rats

Background and purpose: Reduction of muscle mass occurs in some models of muscle atrophy during mechanical unloading status and MST1 and MAFbx genes are believed to have a role. In the present study, the effect of reduced physical activity in the form of spinal nerve ligation (SNL) after a period of endurance training (ET) on the expression of MST1 and MAFbx genes were examined in the rat plant...

متن کامل

Molecular Mechanisms Mediating Retinal Reactive Gliosis Following Bone Marrow Mesenchymal Stem Cell Transplantation.

A variety of diseases lead to degeneration of retinal ganglion cells (RGCs) and their axons within the optic nerve resulting in loss of visual function. Although current therapies may delay RGC loss, they do not restore visual function or completely halt disease progression. Regenerative medicine has recently focused on stem cell therapy for both neuroprotective and regenerative purposes. Howev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013